
AAS 18-XXX

APPLICATIONS OF THE DYNAMIC
N -DIMENSIONAL K-VECTOR

Carl Leake∗, Javier Roa,† and Daniele Mortari‡

The n-dimensional k-vector (NDKV) is an appealing alternative to binary tress
for resolving complex queries in large relational databases. The method has ex-
celled in several applications involving static databases. The present paper extends
the theory supporting the NDKV to handle dynamic databases, where the data is
updated frequently. This includes deleting records, adding new entries, or edit-
ing existing elements. The merit of this new version of the NDKV, the dynamic
n-dimensional k-vector (DNDKV), is that it is no longer necessary to recompute
the entire k-vector (the main structure that indexes the data) every time a record
changes. The algorithm updates the four constituents of the standard NDKV on
the fly: the database, sorted database, index, and k-vector tables. As a result,
the DNDKV becomes comparable in terms of capabilities and flexibility to state-
of-the-art storage engines relying on structured query languages (SQL). The per-
formance of the DNDKV is assessed by running typical read/write operations on
a database that contains millions of pre-computed missions to celestial bodies.
This database requires frequent updates whenever an orbit solution is refined or
new bodies are discovered. The DNDKV is faster than rebuilding the k-vector
tables completely, provided that the number of elements being added or removed
is not excessively large. Direct runtime comparisons with MySQL suggest that
the DNDKV is several times faster for reading but might be slower for writing
and updating the database. One limit of the technique is the elements being added
must be within the range of the current k-vector tables. If this is not the case, the
technique cannot be used and the k-vector tables must be rebuilt from scratch.

INTRODUCTION

For two decades, the k-vector range searching algorithm has been used to solve the Star-ID prob-
lem, generating the state-of-the-art Star-ID algorithm, Pyramid [1]. More recently, the k-vector
has been used in a new star identification algorithm, Super k-ID, which won the “Star Trackers:
First Contact” competition, an ESA Advanced Concepts competition [2]. In addition, the k-vector
was successfully applied to solve a set of new problems, including interpolation and inversion of
nonlinear functions [3].

The main idea of the k-vector is to describe the nonlinearities of a sorted database. The key
feature of the k-vector is that the searching time is independent from the database size. However,
the search time depends on how nonlinear the sorted database is. Using the adaptive k-vector [4],
more memory is allocated to improve k-vector performance when data is strongly nonlinear. Ref-
erence [5] provides an initial description and analysis of this searching method for one-dimensional
databases.
∗Graduate Student, Aerospace Engineering, Texas A&M University, College Station, TX. E-mail: LEAKEC@TAMU.EDU
†Navigation Engineer, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, E-mail:

JAVIER.ROA@JPL.NASA.GOV
‡Aerospace Engineering, Texas A&M University, College Station, TX. IEEE and AAS Fellow, AIAA Associate Fellow.
E-mail: MORTARI@TAMU.EDU

1

Recently [6], the one-dimensional k-vector was extended to n-dimensions; it is called the n-
dimensional k-vector (NDKV). The NDKV has been used to solve problems such as: massive mul-
tidimensional database searching, satellite coverage, and observer position estimation using pulsars.
However, all of these problems use static databases.

This paper extends the use of NDKV by providing a technique to handle dynamic databases, and
applies that technique to a database of missions to celestial bodies. Extending the NDKV to dy-
namic databases increases the utility of the NDKV to astrodynamicists because many astrodynamic
databases –databases of orbital debris, databases of trajectory data, databases of potential missions,
etc.– are dynamic. This technique avoids completely rebuilding the n k-vector tables by leveraging
some of their properties to efficiently update them. Thus, avoiding the computationally expensive
process of rebuilding the n k-vector tables from scratch.

The paper is organized as follows. The next section introduces the concept of the NDKV and
some key definitions. Next, the two sections that follow explain how the dynamic NDKV (DNDKV)
is constructed by adding and removing elements from the database. After discussing the potential for
parallelization, the database of pre-computed missions used for testing is defined. The last section
includes the tests that compare the performance of the DNDKV with MySQL, a very common
database management service used in production systems.

PARTS OF THE NDKV

Before delving into the technique to handle dynamic databases, it is important to understand the
constituents of the NDKV. Note, this section assumes some familiarity with the general NDKV
technique. Readers lacking familiarity with the general technique may refer to the 1-dimensional
k-vector and NDKV sections of Ref. [6].

The NDKV consists of four constituents∗:

1. database

2. sorted database (sorted row-wise)

3. index that maps from the database to the sorted database (referred to hereafter as the index)

4. k-vector tables

All of these constituents are stored as a matrix of size [ND, NE] where ND is the number of di-
mensions and NE is the number of elements. The mathematical relationship between the first three
constituents is shown in Eq. (1),

Si(j) = Di(Ii(j)) where i ∈ [1, ND], (1)

S is the sorted database, D is the database, and I is the index.

The fourth constituent of the NDKV is the k-vector tables. For readers who are unfamiliar with
how the k-vector tables are constructed and used, refer to Ref. [6]. Restated here, because it is of
significant importance for adding and deleting elements in the database, is how to retrieve elements
between two indices, [ya, yb], along one of the dimensions. Let i indicate the dimension being
∗The NDKV may instead consist of three constituents where the sorted database is removed from the set and the

sorted database is “accessed” via the database and the index as shown in Eq. (1)

2

searched along, mi be the slope of the k-vector for the given dimension, and qi be the intercept of
the k-vector for the given dimension. Two indices, ka and kb, are defined according to

ka =

⌊
ya − q
m

⌋
+ 1, and kb =

⌈
yb − q
m

⌉
, (2)

where bXc is the greatest integer lower thanX (the floor function), and dXe is the lowest integer
greater than X (the ceil function). The elements Di(j) that are within the search range [ya, yb]
are Di(Ii(Ki(ka : kb))), or as indexed via MATLAB would be D(i, I(i,K(i, ka : kb))), where K
is the k-vector table. It should be noted that ka and kb may return extraneous elements; therefore, a
very small linear search may need to be performed at the endpoints to ensure no extraneous elements
exist.

The following two sections demonstrate how to efficiently add and remove elements from the
NDKV. Each of these processes will require updating the four constituents of the NDKV. When
programming the process, the authors found it easiest and most efficient to implement the technique
via a class structure. Using the class structure made it simple to internally add features, such as
padding arrays with extra zeros to avoid reallocating memory each time an element was added,
that may be more difficult to handle with a set of independent functions. Furthermore, each of
these processes will require looping over the number of dimensions. Therefore, for a 1-dimensional
k-vector (or just k-vector) this loop can be removed.

ADDING ELEMENTS

Adding elements to the database requires updating the four constituents of the NDKV. First, a
double loop is implemented that updates the database, index, and k-vector tables. The outer loop
is over the dimension and the inner loop is over the elements that are being added. The outer loop
will use index i where i ∈ [1, ND] and the inner loop will use index j where j ∈ [1, NA] where NA

is the number of elements being added. Then, the sorted database is rebuilt by using the database
and the index. For brevity, a MATLAB style convention will be used in this section for indexing
matrices. For example, the element in the ith row and the jth column of matrix A would be accessed
by A(i, j). In addition, a colon will indicate all possible index values along a dimension. For
example, the entire first row of A can be indexed using A(1, :).

The index and k-vector tables are updated by leveraging two properties of the k-vector tables.
The first property is the values of the k-vector tables indicate how many data points are below the
associated value in the mapping function. For example, if K(i, 3) is 5, then there are 5 elements
below the third value in the mapping function. The second property is the k-vector tables can be
used to quickly locate the position in the index where the new element will be added.

Thanks to the first property of the k-vector, it is possible to locate the positions in the k-vector
tables where the changes need to be made:

Kind =

⌈
EA(i, j)

m(i)
+ q(i)

⌉
K(:,Kind : NE) = K(:,Kind : NE) + 1

(3)

where EA is the set of column vector elements to be added. Equation (3) updates the k-vector
tables.

3

The position in the index where the new element will be stored is located making use of the
second property,

kb = K(i,Kind − 1), (4)

where kb is the position in the index just below the position where the new element will be inserted
and Kind is found according to Eq. (3). A linear search is used to increment the value of kb until
the position of the index just below where the new element will be inserted is found. For databases
that are nearly linear when sorted, this linear search typically has to go through 0 or 1 iterations to
locate the position where the new element index will be inserted. The new element index is NE + j.
Then, the ith row of the index can be restructured using

I(i, 1 : NE) = [I(i, 1 : kb), NE + j, I(i, kb+ 1 : NE)] (5)

and the database is updated inside the double loop like

D(i,NE + j) = EA(i, j). (6)

Once the double loop is finished, the final steps are to update the number of elements and rebuild
the sorted database. The number of elements NE is updated with the number of added elements,
NA,

NE = NE +NA. (7)

Finally, the sorted database is rebuilt row by row according to

S(i, 1 : NE) = D(i, I(i, 1 : NE)). (8)

Algorithm 1 provides pseudocode that supplements the explanation given in this section.

Algorithm 1 Adding Elements

1: for i ∈ [1, ND] do
2: for j ∈ [1, NA] do
3: Kind = ceil(EA(i, j)/m(i) + q(i))
4: kb = K(i,Kind − 1)

{Perform a linear search to find the exact value of kb}
5: while D(i, I(i, kb)) > EA(i, j) do
6: kb = kb + 1
7: end while
8: K(:,Kind : NE) = K(:,Kind : NE) + 1
9: I(i, 1 : NE) = [I(i, 1 : kb), NE + j, I(i, kb+ 1 : NE)]

10: D(i,NE + j) = EA(i, j)
11: end for
12: end for
13: NE = NE +NA

14: S(i, 1 : NE) = D(i, I(i, 1 : NE))

4

REMOVING ELEMENTS

Removing elements from the database requires updating the four constituents of the NDKV. First,
a double loop is implemented that updates the database, index, and k-vector tables. The outer loop
is over the dimension and the inner loop is over the elements that are being removed. The outer loop
will use index i where i ∈ [1, ND] and the inner loop will use index j where j ∈ [1, NR] where NR

is the number of elements being removed. Then, the sorted database is rebuilt by using the database
and the index. As in the previous section, a MATLAB style convention will be used for indexing
matrices.

The index and k-vector tables are updated by leveraging the two properties highlighted in the
previous section. The first property is used to locate the positions in the k-vector tables where the
changes need to be made:

Kind =

⌈
ER(i, j)

m(i)
+ q(i)

⌉
K(:,Kind : NE) = K(:,Kind : NE)− 1,

(9)

where ER is the set of column vector elements to be removed. Equation (9) updates the k-vector
tables.

Equation (10) shows how the second property is used to locate the position in the index where
the element to be removed is currently stored,

kb = K(i,Kind − 1), (10)

where kb is the position in the index at or just below the position where the element to be removed
is stored and Kind is found according to Eq. (9). A linear search is used to increment the value of
kb until the position of the index where the element to be removed is stored is found. For databases
that are nearly linear when sorted, this linear search typically has to go through 0 or 1 iterations to
locate the position where the element to be removed is located. Then, the ith row of the index can
be restructured using

I(i, 1 : NE) = [I(i, 1 : kb − 1), I(i, kb + 1 : NE), 0]. (11)

A zero is added to the end of the index to avoid re-allocating memory.

Then, the database is updated inside the double loop following

D(i, I(i, kb)) = NaN. (12)

Setting the elements to NaN instead of actually deleting them preserves the structure of the arrays
leading to a more efficient management of the memory. Once the double loop is finished, the final
steps are to update the number of elements and rebuild the sorted database. The number of elements
is results in

NE = NE −NR. (13)

Finally, the sorted database is rebuilt row by row with

S(i, 1 : NE) = D(i, I(i, 1 : NE)). (14)

Algorithm 2 provides pseudocode that supplements the explanation given in this section.

5

Algorithm 2 Removing Elements

1: for i ∈ [1, ND] do
2: for j ∈ [1, NR] do
3: Kind = ceil(ER(i, j)/m(i) + q(i))
4: kb = K(i,Kind − 1)

{Perform a linear search to find the exact value of kb}
5: while D(i, I(i, kb)) > ER(i, j) do
6: kb = kb + 1
7: end while
8: kb = kb - 1
9: K(:,Kind : NE) = K(:,Kind : NE)− 1

10: I(i, 1 : NE) = [I(i, 1 : kb − 1), I(i, kb + 1 : NE), 0]
11: D(i, I(i, kb)) = NaN
12: end for
13: end for
14: NE = NE −NR

15: S(i, 1 : NE) = D(i, I(i, 1 : NE))

POTENTIAL FOR PARALLELIZATION

There is potential for the DNDKV to be implemented in parallel. Implementing the DNDKV
in parallel would provide the capability to manage a database and search through that database at
the same time. This would be equivalent to supporting row-locking as opposed to table-locking,
an advantage of the InnoDB over the MyISAM storage engines in MySQL. Database management
in parallel could be accomplished by creating two copies of the DNDKV structure. One set of
threads/processors would work on adding and removing elements from the first copy of the database
(database management), while the other set of threads/processors performed range searches on the
second copy. When the first set of threads/processors was done modifying the first copy and the
second set of threads/processors was done performing searches, the sets of threads/processors would
swap the copy of the DNDKV that they were working on. Figure 1 graphically shows this idea using
two different CPUs.

In Fig. 1, CPU 1 handles the search queries while CPU 2 handles the database management. CPU
2 works at maintaining the database until all the desired elements have been added or removed.
Once this happens, the switch (center block) switches the copy of the database that CPU 1 and
CPU 2 are working on. This allows the database to be updated and search queries to be performed
simultaneously.

A DATABASE OF MISSIONS TO CELESTIAL BODIES

Reference [7] describes a newly created database of pre-computed missions to all known asteroids
and comets. It includes 10 search dimensions, which are the departure date, arrival date, ∆v required
to depart from Earth, v∞ at arrival, phase angle, Earth distance, solar elongation at arrival (Sun-
Earth-probe angle), declination of the launch asymptote (DLA), approach angle (formed by the
incoming v∞ vector and the heliocentric velocity of the body), and time of flight. A similar database
has been created to demonstrate the utility and power of the DNDKV. This database contains 20
million different missions. Figure 2 shows a histogram of the time it takes the DNDKV to find all

6

Figure 1: Parallel Database Management System

the elements within a randomly generated search query.

All times reported in the tables and figures in this section were calculated using the tic and
toc functions in MATLAB. These tests were performed on a Windows 10 operating system. The
computer used to run the tests had an Intel(R) Core(TM) i7-7700QM CPU running at 3.60GHz and
16.00 GB of RAM.

The average search time was 18.64 seconds and the standard deviation was 3.16 seconds. Figure
2 demonstrates the speed attainable by the NDKV. Moreover, the aforementioned search times were
when searching with restrictions on all 10 dimensions. If restrictions are only placed on a few of the
dimensions this search time becomes even faster. For example, random search queries on only two
of the dimensions had an average search time of 5.73 seconds. Tables 1 and 2 compare the time it
takes to rebuild the NDKV with the time it takes to add or remove elements respectively using the
DNDKV.

Tables 1 and 2 compare the time it takes to add and remove elements using the DNDKV with the
time it takes to completely rebuild the NDKV structure.

Number of Elements Added Rebuild Time (s) Add Time (s)

1 117.8 15.98
10 118.7 47.29
100 126.9 381.4

Table 1: Rebuilding the Database Versus Adding Elements to the Database

7

Figure 2: N -Dimensional K-Vector Search Time

Number of Elements Removed Rebuild Time (s) Remove Time (s)

1 115.2 14.73
10 114.6 46.54
100 113.9 372.2

Table 2: Rebuilding the Database Versus Removing Elements from the Database

Tables 1 and 2 show that using the DNDKV technique is faster than rebuilding the NDKV from
scratch, provided that the number of elements being added or removed is sufficiently low. However,
once the number of elements being added or removed becomes large enough, the time to rebuild
the database actually takes longer than just rebuilding the NDKV from scratch. The exact number
of elements at which rebuilding the NDKV from scratch becomes more computationally efficient
than using the DNDKV is highly sensitive to the number of elements already in the database and
where in the database the elements are being added or removed. The averages from a Monte Carlo
simulation, like the on performed here, can help determine whether to completely rebuild the NDKV
or use the DNDKV. However, this type of test will have to be performed for each database if the
user wants to find the most computationally efficient solution.

Tables 1 and 2 also show that the DNDKV is most useful when only a few elements are added at
a time. For example, if the sample database used here had ten elements added to it every hour, then
the DNDKV is a perfect solution, because search queries on the database only have to be stopped
for approximately 47 seconds every hour while the database updates.

8

PERFORMANCE OF THE DNDKV

Most production systems rely on structured query languages (SQL) for managing relational
databases. In particular, MySQL is a very popular open-source engine that was developed more
than 20 years ago. Therefore, it is important to compare the performance of the DNDKV to stan-
dard MySQL storage engines to fully assess the potential of the algorithm. The MySQL server used
in the simulations is hosted on a MacBook Pro High Sierra, with an Intel(R) Core(TM) i7 CPU
3.1GHz and 16.00 GB of RAM. For consistency, the DNDKV queries are also run on this machine.

MySQL is written in C and C++ and currently supports several storage engines, each with dif-
ferent features. MyISAM is chosen over InnoDB to run the performance comparisons in this paper
as it is often more efficient for reading from the database. MyISAM implements a B-Tree indexing
system for fast database lookup, although the query optimizer ultimately decides whether to use
indexing or not depending on the estimated cost of the B-Tree search compared to a full table scan.

There are three main operations to interact with a relational database: SELECT, DELETE, and
INSERT/UPDATE. SELECT statements filter the database to find the records that satisfy certain
search criteria and operates in read-only mode. DELETE and INSERT are used to remove and
add records to the database, respectively, and UPDATE allows to modify specific records that are
already present. When writing to the database either in DELETE or INSERT/UPDATE mode, the
MySQL engine needs to update the corresponding index table and re-order the data in the table, just
like the DNDKV algorithm needs to update the k-vector. Three different tests have been designed
to compare the performance of the DNDKV compared to MySQL when operating in SELECT,
DELETE, and INSERT/UPDATE modes:

• SELECT mode: Table 3 lists 10 different queries conceived to produce a diverse set of data
intersections. Each query produces an increasing number of matches. For simplicity and
without loss of generality, we restrict the queries to the departure and arrival dates, the time
of flight (TOF), the departure ∆v, the arrival v∞, and the approach angle γ, defined by the
arrival v-infinity vector and the heliocentric velocity of the body:

γ = arccos

(
v∞ · vbod

||v∞|| ||vbod||

)
.

Figure 3 provides some insight into how the different queries intersect the data under consid-
eration, using queries 2, 3, and 7 as examples.

• DELETE mode: all missions to certain asteroids will be deleted. The chosen asteroids are the
first one in the database, and those that fall closer to the 25%, 50%, and 75% positions. Re-
moving records in very different positions in the database exercises the data resorting carried
out by both the DNDKV and MySQL.

• UPDATE mode: all fields except the object ID and the dates will be set to zero for the first
record and those that fall closer to the 25%, 50%, and 75% positions. The UPDATE mode is
chosen over INSERT because the latter will always append records at the end of the table,
whereas the former forces the storage engine to modify the indexes in the case of MySQL or
the k-vector in the case of the DNDKV.

Since the performance of each operation depends strongly on the size of the database, the test
database has been split databases of increasing size to assess how each database engine is affected

9

Id Matches Departure date Arrival date TOF ∆vdep v∞,arr Appr. ang.
(%) (MJD) (MJD) (days) (km/s) (km/s) (deg)

1 0.02 − − = 300 < 5 − −
2 0.78 (59500, 63500) (63000, 65000) (300, 2500) (1, 6) (5, 15) (50, 150)
3 3.66 (62000, 62400) (62500, 64000) − − − −
4 4.78 > 64500 < 70000 (100, 1440) < 7 < 10 > 120
5 10.95 − < 68000 < 1500 − < 5 −
6 31.96 − (65000, 70000) − − − (90, 170)
7 38.76 − − (365, 1461) (3, 9) (1, 10) −
8 71.38 > 60000 − − > 6 − −
9 78.34 − − − − (5, 15) > 100
10 86.41 − − < 1461 − − −

Table 3: Definition of the test queries

by this factor. Table 4 describes each test database, which has been generated by randomly sampling
asteroids from the master database in [7] until the database reached the requested size.

Database Id Records Data Size (MB) Index Size (MB) Total Size (MB)

DB-A 20,000 1.01 2.30 3.31
DB-B 63,246 3.20 7.23 10.43
DB-C 200,000 10.11 22.78 32.89
DB-D 632,456 31.97 72.05 104.02
DB-E 2,000,000 101.09 227.88 328.97

Table 4: Description of the test databases

The random sampling from the master database ensures that the data in each database is equally
distributed, as proven in Fig. 4.

SELECT Statements

The performance of the NDKV when filtering data is compared to MySQL by running the queries
in Table 3 on all the databases in Table 4. For each database size, the relative of speedup of NDKV
with respect to MySQL is presented in Fig. 5. Depending on the query parameters, the NDKV
show speedups of more than a factor 6. The intersection process when using the NDKV is more
sensitive to the size of the database than MySQL. This apparent performance loss can potentially be
alleviated, at least partially, when working with a C/C++ version of the NDKV that accelerates the
intersection step.

Query 10 exhibits the best relative performance and it corresponds to a search with constraints
on only one parameter. Intuitively, searching along one unique dimension is extremely easy for the
NDKV because the underlying data sorting. As more variables are to be intersected, the computa-
tional cost will increase. Queries 3 and 5 follow in terms of performance improvements with two
and three intersected variables, respectively.

10

Figure 3: Visualization of queries 2, 3, and 7 intersecting the data

The case of Query 1 is interesting because it shows how MySQL is more efficient when resolving
equality constraints. In particular, the index on the time-of-flight variable allows MySQL to access
the table by reference rather than by scanning, reducing the estimated cost by a factor of 45. This is
a good example of the improvements in the performance that the optimizer can potentially introduce
when choosing the right use of the indexes. There are, however, some situations in which conser-
vative cost estimates make the optimizer decides to use an index while a direct scan of the table
would be more efficient. This phenomenon explains the relatively poor performance of MySQL
when resolving Query 4 for the first and last database sizes.

DELETE Statements

Figure 6 compares the performance of the DELETE calls. MySQL outperforms the current imple-
mentation of the NDKV because of the intrinsic cost of updating the k-vector. The latter algorithm
is again more sensitive to the size of the database, resulting in performance drops as the number of
elements in the table increases.

UPDATE Statements

Being both “write” operations, the relative performance of the UPDATE calls is similar to the
DELETE calls. Figure 7 shows that MySQL might be several orders of magnitude faster than the
NDKV as the database size increases.

11

0 2 4 6 8 10 12

v
dep

 (km/s)

DB-A

DB-B

DB-C

DB-D

DB-E

(a) Departure ∆v

0 20 40 60 80

v
,arr

 (km/s)

(b) Arrival v∞

0 5 10 15 20 25

TOF (years)

(c) Time of flight

0 30 60 90 120 150 180

Approach angle (deg)

(d) Approach angle γ

Figure 4: Relative distribution of records in the test databases

2 10
4

2 10
4.5

2 10
5

2 10
5.5

2 10
6

DB size

0

1

2

3

4

5

6

7

S
p

e
e
d

u
p

Q-1

Q-2

Q-3

Q-4

Q-5

Q-6

Q-7

Q-8

Q-9

Q-10

Figure 5: Speedup of the NDKV compared to MySQL’s SELECT mode

SUMMARY AND FUTURE WORK

In summation, the dynamic n-dimensional k-vector (DNDKV) is a powerful technique that ex-
tends the NDKV to databases that have elements added or removed over time. This increases sig-

12

2 10
4

2 10
4.5

2 10
5

2 10
5.5

2 10
6

DB size

10
-3

10
-2

10
-1

10
0

S
p

e
e

d
u

p

Q-1

Q-2

Q-3

Q-4

Figure 6: Speedup of the NDKV compared to MySQL’s DELETE mode

2 10
4

2 10
4.5

2 10
5

2 10
5.5

2 10
6

DB size

10
-4

10
-3

10
-2

10
-1

10
0

S
p

e
e

d
u

p

Q-1

Q-2

Q-3

Q-4

Figure 7: Speedup of the NDKV compared to MySQL’s UPDATE mode

nificantly the range of applications of the NDKV as it is now an appealing alternative for managing
dynamic databases. The DNDKV is most useful when the updates to the database are frequent,
but only have a few elements being added or removed. Moreover, the elements being added to the
database must fall within the current range of the k-vector tables.

Performance tests suggest that important improvements in the performance of search queries
can be expected when comparing the NDKV with state-of-the-art production engines like MySQL.
Statements that modify the database are still more costly but, for read-intense applications, overall
performance gains should be expected.

13

Future work should investigate running the DNDKV in parallel with database search queries. Do-
ing so would allow one to continually search through the database with no interruptions for database
updates, similar to the row-locking capabilities of the InnoDB engine. Furthermore, future work
could include finding a better method than Monte Carlo simulation to predict how many elements
need to be added or removed before completely rebuilding the NDKV structure becomes more com-
putationally efficient than using the DNDKV. Implementation improvements might reduce the cost
of “write” operations associated to re-computing the k-vector.

The DNDKV loads the database in RAM memory, which explains in part the speedups when
reading the data. This behavior can limit the size of the databases that can be efficiently handled
by the DNDKV. Splitting techniques should be investigated in order to increase the potential of the
method.

ACKNOWLEDGMENTS

Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

REFERENCES
[1] D. Mortari, M. A. Samaan, C. Bruccoleri, J. L. Junkins, The Pyramid Star Identification Technique, ION

Navigation 51 (3) (2004) 171–183.
[2] Star identification has never been so fast and accurate, http://www.esa.int/gsp/ACT/news/

archive/84 oct 2017 star trackers.html, accessed: 03/18/2019.
[3] D. Mortari, J. Rogers, A k-vector Approach to Sampling, Interpolation, and Approximation, AAS The

Journal of the Astronautical Sciences 60 (3) (2015) 686–706.
[4] D. Mortari, Memory Adaptive k-vector, in: 2014 AAS/AIAA Space Flight Mechanics Meeting Confer-

ence, Santa Fe, NM, 2014, AAS 14-207.
[5] D. Mortari, B. Neta, k-vector Range Searching Techniques, in: Advances in the Astronautical Sciences,

Vol. 105, Pt. I, 2000, pp. 449–464.
[6] D. Mortari, C. Leake, S. Borissov, The n-dimensional k-vector with applications, in: 2018 AAS/AIAA

Space Flight Mechanics Meeting Conference, Kissimmee, FL, 2018.
[7] J. Roa, A. B. Chamberlin, R. S. Park, A. E. Petropoulos, P. W. Chodas, D. Landau, D. Farnocchia,

Automatic design of missions to small bodies, in: 2018 Space Flight Mechanics Meeting, 2018, p. 0200.
doi:10.2514/6.2018-0200.

14

